

CDM in a Distributed Environment

Sandra L. Crowley Heather L. Madison

1st NASA Project Management Conference March 31, 2004

Contents

- Introduction
 - CM, DM, and CDM
 - AEE and CDM
 - CDM in Distributed Environment
- Challenges and Lessons Learned
 - Life Cycle Process Model
 - CDM Plan
 - CDM Tools
 - Communication
- Conclusions

Introduction

 If you don't know where you're going, you will most likely end up somewhere else.

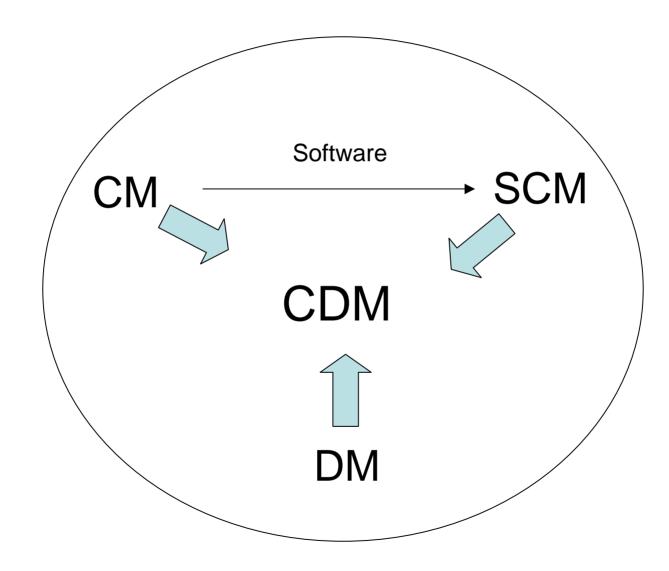
Objective:

- Produce the same results (output) consistently
- Given the same input and parameters

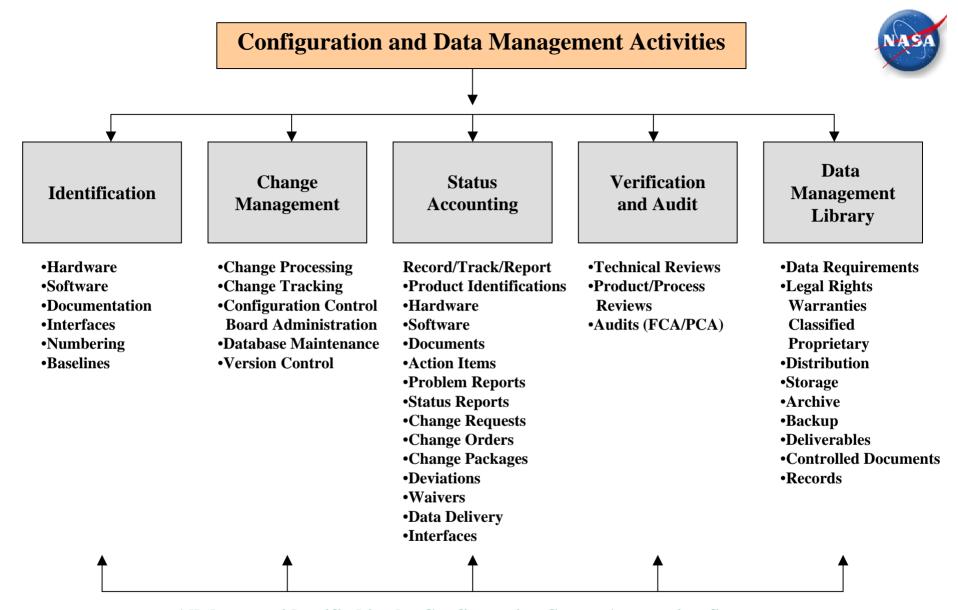
Configuration Management (CM)

EIA-649

 A management process for establishing and maintaining consistency of a product's performance, functional, and physical attributes with its requirements, design, and operational information throughout its life.



Data Management (DM)


- GEIA-859, draft
 - Consists of the disciplined processes and systems that plan for, acquire, and provide stewardship for product and product-related business data, consistent with requirements, throughout the product and data life cycles.

CDM

M

All data are identified in the Configuration Status Accounting System

CDM (continued)

CM controls

- Performance and physical/functional attributes of the product
- Hardware produced by the Project team

SCM controls

- Code produced by development team
- Test results produced by the test team

DM controls

- Documentation produced by the Project team
- Data produced by the Project team

Provides link to Records Management

Controls records produced by the Project team

CDM (continued)

- Configuration and Data Management (CDM) is not commercial-off-the-shelf (COTS) install and go
 - Decisions need to be made upfront
 - CM policies/procedures need to be planned and documented
 - Identification, change management, status accounting, verification, tracking, ...
 - SCM policies and procedures need to be planned and documented
 - Branching strategy, promotion policy, directory structure, ...
 - DM policies/procedures need to be planned and documented
 - Data modeling, relationships, document trees, forms development, review, baseline, notifications, distribution, access, ...

AEE Project (Space Launch Initiative)

- Develop toolset capable of evaluating the emerging launch vehicle technologies from the viewpoints of performance, feasibility, cost, safety, risk, and reliability.
- Deliver an advanced engineering environment with lifecycle and performance models capable of modeling technology, performance, safety, reliability, cost, and risk.
- Integrate products into a sequence of capability builds that are tested and validated by and for customers.

AEE and CDM

- CDM on one software tool at one location is challenging
- Implementing CDM on 23+ configuration items (CIs) demands solutions on a different order of magnitude
- NASA's Space Launch Initiative (SLI) Advanced Engineering Environment (AEE) Project provides
 - Environment to test application of CDM principles at complex level
 - CDM disciplines provide stability to complex environment

AEE CDM Objectives

- Establish and maintain CDMOPs to define "how" the CDM principles are applied
- Identify product attributes as a basis for control
- Document product configurations as a basis for making changes to increase reliability and predictability
- Uniquely identify configuration items to facilitate traceability throughout the product life cycle
- Manage change activities using an approved Configuration Control process for all configuration items and baselines
- Identify, track, and report changes made to product baselines
- Ensure that changes are approved, recorded, and formally incorporated in all controlled products
- Conduct audits and reviews of AEE products and processes to verify product configurations and change history
- Establish a secure repository of information for AEE hardware, software, and documentation
- Organize CDM data for ease of access and retrieval to facilitate the management decision making process

CDM in Distributed Environment

- CDM is challenging when confined to one location
- Implementing CDM activities across a distributed computing environment and across the Agency increases the level of difficulty
 - Firewall issues
 - Export control issues
 - Culture, missions, ethics
 - Contracting, agency, and center procedures
- One NASA
 - Environment to apply CDM principles at complex level
 - CDM disciplines provide stability to complex environment

Life Cycle Process Model— Challenge

- Align CDM with project's life cycle process model
 - Reflect level of process maturity appropriate to risk associated with end product(s)
 - The more mission-critical (loss of life and/or potential for serious injury) a system, the more mature the life cycle model
 - Research center versus mission-critical, flight operations center
 - Products produced and system used to produce products are unique to the objectives of the center
 - Center culture becomes evident in organizational formation, lines of authority and accountability, and producing system

- Implement CDM early in project life cycle
 - Provides technical/programmatic insight into project
 - Timely planning, identification, and control of all project products (versus after-the-fact capture of artifacts)
 - Identify and establish appropriate processes to mitigate project risks
 - CDM Team can be proactive (versus reactive)

CDM Plan—Challenge

- CDM Plan development within a culture-diverse team
 - Obstacles
 - Culture/environment/terminology differences
 - Experience base of the distributed team members
 - Processes previously used by the team members
 - Good mechanism
 - Level the team's experiences
 - Reach a common understanding of the approach needed to meet the project's CDM requirements
 - CDM requirements
 - Endorsed early by the Project Manager
 - Specified in the project's high-level documentation
 - Carry no less weight than technical requirements

CDM Plan—Lessons Learned

- Effective CDM implementation calls for direct accountability to the highest project authority
 - Visibility into CDM activities
 - Succinct lines of communication
 - Unambiguous reporting structure for CDM team members
- Disciplined approach required to implement CDM in a distributed environment
 - Culture and geographical differences
 - Diversity of business goals for a particular site or center
 - Consensus between centers that is supported by all

NASA

CDM Plan—Lessons Learned (continued)

- CDM Plan needs to reflect common understanding of CDM elements by all CDM personnel
 - Follow a widely accepted standard (EIA/Mil-Std/IEEE/NASA)
 - Credible, best practices approach to the CDM planning activities
 - Decisions on tools to facilitate the CDM and SCM activities
 - Change authorities for proposed changes to baseline products
 - CDM procedure documentation and approval
 - Communicated to management for buy-in and approval
 - Approval by Project Manager prior to implementation
 - Authorizes CDM activities at the proper level
 - Prevents misconceptions and false starts of the CDM process

CDM Tools—Challenge

- Selection of effective tools to facilitate CDM activities
 - Establish CDM tool requirements
 - Meet needs of distributed environment
 - Multiple development and test platforms
 - Multiple users in multiple locations
 - Varying experiences and knowledge base
 - Multiple tools with multiple access issues
 - Geographical-based vendor alliances
 - Consider usability issues and buy-in from users
 - Reduces risk during implementation
 - Increased likelihood of user acceptance of the CDM tools and methods.
 - Maintain intent of CDM objectives
 - Define upfront all technical and programmatic requirements that impact tool selection

CDM Tools—Lessons Learned

- Establish tool requirements
 - Meet needs of the distributed environment
 - Do NOT compromise intent of CDM objectives
 - Reduces risk during implementation
 - Consider usability issues and buy-in from users
 - Provides user acceptance of CDM tools/methods

Communication—Challenge

- Team communications in a distributed environment
 - Good communication is discriminator between
 - Complete, accurate, and correct products/processes
 - Products/processes that fall short of customer expectations
 - Effective CDM communication includes
 - User-specific training of process theory and terminology
 - Process details
 - How tools are used to facilitate these processes
 - Communication of CDM requirements must begin with highest project authority (Project Manager)
 - Empowers CDM team to continue to communicate detailed implementation activities across organizational elements
 - Creatively use today's technology to keep team members wellinformed

Communication— Lessons Learned

Communication

- Identify team members and develop team atmosphere
- Develop mechanisms to keep all team members plugged-in
 - Distribution lists for each functional element
 - Centralized location for meeting minutes and records
 - Easy access to project data supports the interaction among team members required to facilitate proposed change impact analysis and assessments
 - Utilize available technical assets to communicate and distribute information
- Identify and provide relevant, up-to-date, training for all team members' training needs

Conclusions

- The more things change, the more they stay the same
 - CDM disciplines provide glue to hold project and products together
 - Greater need exists in distributed environment
 - Greater distance between project members and products
- It's the same problem
 - Implementation prior to requirements definition and design is a bad idea—in any discipline
 - Basic principles should not be compromised—especially, when it is the right thing to do
- Standardized CDM requirements and processes
 - Define/establish early in the project
 - Implement mature CM/SCM and DM processes
 - Supported by project management
 - Provide basis for clear, concise, and valid project information
 - Maintain project information as accurate and useful

Conclusions (continued)

- AEE CDM Team has formed from distributed group of individuals
 - Flow process developed/updated to match project activities' changes
 - CDM Plan draft meets industry/project standards
 - CDM tool requirements have been gathered
 - Existing CDM tools being reevaluated
- SCM has been applied to AEE efforts
 - Not as early as desirable
 - Products have been "tested" in real time by users/developers prior to placement under control
 - Need to understand the impacts of changes and process more proactively in research-type of environment
 - Processes need to be fully documented and applied
- DM is currently in the planning process
 - Document Review Process
 - Document Tree
- Much progress made, much to be done

Final Conclusion

Change will happen

CDM will enable you to identify, document, control, account, verify, and access it